Tidal Constraints on the Masses of Extrasolar Planets

نویسنده

  • D. E. Trilling
چکیده

Tidal theory predicts that the orbits of close extrasolar giant planets will circularize on timescales that can be comparable to the ages of those systems. Additionally, planets that are close enough and massive enough can spin up their central stars. Since the eccentricities of extrasolar planet orbits are determined by the radial velocity technique and since stellar rotation rates are observed, or at least derived, limits on the masses of close extrasolar planets can be placed. We find upper limits on the masses of eight extrasolar planets, including limiting the masses of u And b, HD 75289b, HD 187123b, and 51 Peg b to less than 1.48, 1.21, 0.59, and 0.51 Jupiter masses, respectively. There is a contradiction in the constrained mass of HD 217107b, in that its eccentricity is apparently too high. This anomalously high eccentricity could be real and caused by other planets in that system; or it could be an artifact of fitting a one-orbit solution to multiplanet data. The tidal limits placed on all these extrasolar planets are only as good as the knowledge of the stellar parameters (age, rotation period), which in some cases is not very good; better detailed knowledge of stars hosting planets will be necessary. Subject headings: celestial mechanics, stellar dynamics — planetary systems — solar system: formation — solar system: general — stars: individual (Gliese 86, HD 75289, HD 130322, HD 187123, HD 192263, HD 195019, HD 217107, u Andromedae, 51 Pegasi) — stars: rotation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Origins of Eccentric Extrasolar Planets: Testing the Planet–planet Scattering Model

Any planetary system with two or more giant planets may become dynamically unstable, leading to collisions or ejections through strong planet–planet scattering. Following an ejection, the other planet is left in a highly eccentric orbit. Previous studies for simple initial configurations with two equalmass planets revealed two discrepancies between the results of numerical simulations and the o...

متن کامل

Tidal heating of terrestrial extrasolar planets and implications for their habitability

The tidal heating of hypothetical rocky (or terrestrial) extrasolar planets spans a wide range of values depending on stellar masses and initial orbits. Tidal heating may be sufficiently large (in many cases, in excess of radiogenic heating) and long-lived to drive plate tectonics, similar to the Earth’s, which may enhance the planet’s habitability. In other cases, excessive tidal heating may r...

متن کامل

On Stellar Activity Enhancement Due to Interactions with Extrasolar Giant Planets.

We present a first attempt to identify and quantify possible interactions between recently discovered extrasolar giant planets (and brown dwarfs) and their host stars, resulting in activity enhancement in the stellar outer atmospheres. Many extrasolar planets have masses comparable to or larger than Jupiter and are within a distance of 0.5 AU, suggesting the possibility of their significant inf...

متن کامل

On the Origins of Eccentric Close-in Planets

Strong tidal interaction with the central star can circularize the orbits of close-in planets. With the standard tidal quality factor Q of our solar system, estimated circularization times for close-in extrasolar planets are typically shorter than the ages of the host stars. While most extrasolar planets with orbital radii a . 0.1AU indeed have circular orbits, some close-in planets with substa...

متن کامل

A correlation between the heavy element content of transiting extrasolar planets and the metallicity of their parent stars

Context. Nine extrasolar planets with masses between 110 and 430M⊕ are known to transit their star. The knowledge of their masses and radii allows an estimate of their composition, but uncertainties on equations of state, opacities and possible missing energy sources imply that only inaccurate constraints can be derived when considering each planet separately. Aims. We seek to better understand...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000